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Abstract 
 

Grain shape is a very important goal in the rice breeding program nowadays. Underlying the genetic basis of grain shape 

would largely speed the breeding process. In the present study, a diverse panel of 1016 rice accessions from 70 countries and 

areas worldwide were evaluated for their grain shapes. There were large variations for all three grain shape traits, including 

grain length, grain width and length to width ratio, and they had significantly positive or negative correlations with each other. 

Besides, high positive correlations were found between two experimental years. Genome-wide association mapping strategy 

was conducted to identify QTL for grain shape using 509219 high quality SNP genotypes and grain shape traits. A total of 70 

QTL were identified in all chromosomes. Among them, 16 QTL were found on chromosome 1, 2, 3, 5, 7, 9 and 11 expressed 

in both years. Eight genomic regions on chromosome 1, 3, 4, 5, 7 and 9 had pleiotropic effects on two or three traits. Four 

genomic regions on chromosome 3, 5, 6 and 7 were identified in both year and controlled more than two traits. Besides, 25 

QTL on all chromosomes except chromosome 8, 10 and 12 had large effect on the traits. In conclusion, these results helped us 

better understand the genetic basis of rice grain shape and provide valuable gene resources for improving rice grain for desired 

shape. © 2020 Friends Science Publishers 
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Introduction 
 

In the past half century, rice (Oryza sativa L.) yield has been 

sharply increasing because of two green revolutions (Zhang 

2007). However, quality of most rice varieties was very low. 

With rising living standard and development of economy at 

rice-consuming area, rice quality has been paid more and 

more attention by both consumers and producers. Thus, 

improving rice quality has become an important breeding 

goal in rice breeding (Tan et al. 2000; Zou et al. 2018). 

Rice quality could be divided into four types. Among 

them, grain shape (belonging to appearance quality) is an 

especially important one. Peoples at difference countries 

and areas preferred different shapes with different prices 

(Luo et al. 2004). Besides, it could affect grain chalkiness 

and head milled rice rate. Further, grain shape is also an 

important factor for rice yield by controlling grain weight 

(Qiu et al. 2017). Grain shape consists of grain length (GL), 

grain width (GW) and length to width ratio (LWR). All of 

them are quantitative traits and controlled by a lot of gene 

located on all chromosomes (http://www.gramene.org/). 

Among them, some genes have been successfully cloned, 

such as GW2 (Song et al. 2007), qSW5/GW5/GSE5 

(Shomura et al. 2008; Weng et al. 2008; Liu et al. 2017), 

GS3 (Mao et al. 2010), GS5 (Li et al. 2011), GL3.1 (Qi et 

al. 2012; Zhang et al. 2012), GS2 (Che et al. 2015; Hu et al. 

2015), GL7/GW7/SLG7 (Wang et al. 2015; Zhou et al. 

2015), GLW7 (Si et al. 2016), smg11 (Fang et al. 2016), 

SGDP7 (Bai et al. 2017) and GS9 (Zhao et al. 2018). 

In recent years, genome-wide association mapping 

(GWAS) based on linkage disequilibrium (LD) has been 

used to identify a large number of quantitative trait loci 

(QTL) for rice grain shape. Seven QTL were detected for 

grain length and width in 517 landraces by resequencing 

(Huang et al. 2010; Wattoo et al. 2019). Zhao et al. (2011) 

identified 56 loci for grain shape of rice seed and brown rice 

respectively by 413 diverse inbred accessions using 44K 

SNP genotypes. Zhang et al. (2014) detected 35 QTL for 

three grain shape traits by 150 landraces with 274 simple 

sequence repeat markers. Nineteen QTL were identified for 

grain shape using 272 xian (indica) accessions with 

genotyping of 22266 SNPs (Qiu et al. 2015). Likewise, 45 

http://www.gramene.org/
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QTL and 17 candidate genes were identified for rice 

appearance quality using 258 accessions from 3K RGP with 

high-through genotyping (Wang et al. 2016). 

In the present study, we evaluate the grain shapes of 

1016 accessions from 3K Rice Genome Project (Wang et al. 

2018). GWAS was performed to identify QTL for rice grain 

shape using high quality SNPs generated from 3K RGP 

through high-throughput sequencing. The association results 

are likely to help us better understand the genetic basis of 

rice grain shape and provide valuable gene resources for 

improving rice grain shape. 
 

Materials and Methods 
 

Association Mapping Materials 
 

A total of 1016 rice accessions from 3K RGP (Wang et al. 

2018) which could normally flower in Jinghzou city were 

used in this study. They came from 70 countries worldwide, 

including 262 (25.79%) from China, 132 (12.99%) from 

India, 78 (7.68%) from Philippine, 63 (6.20%) from 

Bangladesh, 38 (3.74%) from Japan, 201 (19.78%) from 

other Asian countries, 234 (23.03%) from America, Europe, 

Africa and Oceania, and 8 (0.79%) with unknown origin. 

They were divided into five subpopulations, including 543 

(53.44) Xian (indica, 543, 53.44%), Geng (japonica, 318, 

31.30%), aus (115, 11.32%), basmati (12, 1.18) and 

admixture (28, 2.76%). 
 

Field Trails and Trait Measurement 
 

All accessions were planted in the summer seasons of 2015 

and 2016 on the experimental farm of Yangtze University at 

Jingzhou, China (30.2°N, 112.7°E). Seeds were sown at 

May 5 and transplanted at about 35 days after sowing. Each 

plot was grown in three or four rows with six individuals in 

each row. The spacing among different plants was 20 cm × 

20 cm. The experiment design was randomized complete 

block design with two replications. 

At maturity stage, all individuals of each plot were 

harvest and bulked. GL, GW and LWR were evaluated after 

storing for three months. One hundred full filled seeds were 

selected for measurement. GL and GW were determined by 

lined 10 grain end-to-end and breadth, respectively. They 

were both measured for three times, and the average values 

were used for analysis. LWR was calculated as GL divided 

by GW. 

 

Data Analysis and Association Mapping 

 

Statistica v5.5 was used for analyzing statistical description 

and correlations between two different traits and between 

two years for one trait (Morales 2001). A 2.3 M SNP data of 

1016 accessions were generated from 3K RGP in RFGB 

v2.0 (Wang et al. 2020). For SNPs that had more than three 

alleles, only two highest frequency alleles were retained and 

the rest were considered missing. Heterozygous alleles were 

also considered missing. The SNP loci with missing rate 

over 20% or minor allele frequency (MAF) below 0.05 were 

removed. Finally, 509219 SNPs were used for GWAS. 

The GWAS was conducted to detect QTL for grain 

shape by 509219 high quality SNPs and the trait values of 

the 1016 accessions using the SVS software package (SNP 

& Variation Suite, Version 8.4.0). The single-locus mixed 

linear model was applied to the marker dataset (Kang et 

al. 2010; Vilhjalmsson and Nordborg 2013). The 

threshold was set as P < 2.0 × 10
−6

. Since the LD decay 

in 3K rice germplasms were extend from 100–200 kb 

(Wang et al. 2018), peak SNPs within 200 kb were 

considered as a single QTL. 
 

Results 
 

Grain Shape Performances of 1016 Accessions 
 

The grain shape of 1016 accessions is listed in Table 1. In 

both years, all three traits showed large variations (CV 

ranged from 11.49–22.11%), and LWR had larger variation 

than GL and GW (CV was above 20% for LWR and below 

20% for both GL and GW). All traits appeared to be 

normally distributed in both years, suggesting that they were 

controlled by multiple genes. Interestingly, GL and GW in 

2015 were significantly longer and wider than that of 2016. 
 

Correlation among Different Traits 
 

Correlation coefficients among and between different traits 

for two years are presented in Table 2. The correlations 

among different grain shape traits were similar in both 

years. GL had moderate negative correlation with GW 

(correlation coefficients were -0.50 and -0.46 in 2015 and 

2016 respectively), and was highly positive correlated with 

LWR (correlation coefficients 0.83 and 0.81 in 2015 and 

2016 respectively). GW was highly negatively correlated 

with LWR (correlation coefficients -0.88 in both 2015 and 

2016). Moreover, highly positive correlations were shown 

between two years for all three grain shape traits, indicating 

that environments had low affection on them. 
 

Genome-wide Association Mapping for Three Grain 

Shape Traits 
 

A total of 70 QTL were identified for three grain shape 

traits, located on all 12 chromosomes (Table 3 and Fig. 1). 

For GL, 24 QTL were identified in the two years, and 

located on 12 chromosomes except chromosome 8 and 12. 

Among them, 8 QTL were detected only in 2015, including 

qGL1, qGL2, qGL4.1, qGL5.2, qGL6.1, qGL7.3, qGL9.1 

and qGL9.3, and they explained 1.2–30.1% of phenotypic 

variations. 9 QTL including qGL3.2, qGL4.2, qGL4.3, 

qGL5.3, qGL6.4, qGL7.2, qGL9.2, qGL10 and qGL11.1 

were identified only in 2016, with the phenotypic variation 
rate varied from 0.9% to 13.1%. 7 QTL (qGL3.1, qGL3.3, 

qGL5.1, qGL6.2, qGL6.3, qGL7.1 and qGL11.2) were found 
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in both years, with the average phenotypic rate of 14.9% 

and 14.2% in 2015 and 2016 respectively. Among all 

detected QTL, 9 QTL (qGL2, qGL3.1, qGL4.1, qGL5.1, 

qGL5.2, qGL6.1, qGL7.2, qGL9.1 and qGL11.1) were main, 

which explained more than 10% phenotypic variations. 

Twenty one QTL were identified on all chromosomes 

except chromosome 10 and 12. Among them, 9 QTL 

including qGW1.2, qGW3.2, qGW4, qGW5.3, qGW6, 

qGW8.1, qGW11.2, qGW11.4 and qGW11.5 were detected 

only in 2015 and accounted for 1.1–17.1% of phenotypic 

variations. 8 QTL (qGW2, qGW3.1, qGW5.2, qGW8.2, 

qGW9.1, qGW9.2, qGW11.1 and qGW11.3) were identified 

Table 1: Grain shape performance of 1016 accessions 
 

Traita Year Mean ± SD Range CV (%) pb 

GL 2015 8.66±1.01 5.57-11.85 11.64  5.81×10-214 
 2016 7.26±0.83 4.73-9.77 11.49   

GW 2015 3.04±0.42 1.92-4.19 13.75  1.06×10-174 

 2016 2.52±0.35 1.67-3.61 13.83   
LWR 2015 2.93±0.65 1.72-4.70 22.11  0.31 

 2016 2.96±0.65 1.69-4.73 22.00   
a GL, grain length; GW, grain width; LWR, length to width ratio 

b difference between two years 

 

Table 2: Correlation coefficients among different grain shape traits in the two years 
 

Grain characteristics GL GW LWR 

GL 0.91** -0.46** 0.81** 

GW -0.50** 0.90** -0.88** 

LWR 0.83** -0.88** 0.94** 
Data under and above the diagonal were correlations among different grain shape traits in 2015 and 2016, respectively; data in the diagonal were correlations between two years of 

the same trait. GL, grain length; GW, grain width; LWR, length to width ratio. ** represented significant level at p<0.01 

 

 

 

 

 

  
 

Fig. 1: Manhattan plot and QQ plot of grain shape traits in 2015 and 2016 
A, GL in 2015; B, GW in 2015; C, LWR in 2015; D, GL in 2016; E, GW in 2016; F, LWR in 2016 



 

GWAS Analysis for Grain Shape in Rice/ Intl J Agric Biol, Vol 23, No 3, 2020 

 585 

Table 3: QTL detected for three grain shape traits in the two years 

 
Trait QTL Year Chr. Peak Position (bp) P value allelea MAFb R2(%)c 

GL qGL1 2015 1 40078994 2.10×10-8 C/A 0.15 29.1 

 qGL2 2015 2 21944316 3.98×10-7 A/G 0.14 26.0 
 qGL3.1 2015 3 16733441 8.48×10-32 G/T 0.38 52.2 

  2016 3 16733441 2.21×10-24 G/T 0.37 44.5 

 qGL3.2 2016 3 22660967 2.33×10-7 C/T 0.28 4.4 
 qGL3.3 2015 3 24310091 3.73×10-8 G/A 0.11 3.3 

  2016 3 24310073 3.57×10-7 G/A 0.11 5.2 

 qGL4.1 2015 4 11305816 1.71×10-6 G/T 0.27 17.5 
 qGL4.2 2016 4 22488406 1.23×10-6 G/A 0.05 6.5 

 qGL4.3 2016 4 29308935 1.20×10-6 C/A 0.09 0.9 
 qGL5.1 2015 5 5372955 6.37×10-14 A/G 0.46 34.6 

  2016 5 5372955 8.75×10-13 A/G 0.49 30.6 

 qGL5.2 2015 5 24521950 1.33×10-7 C/T 0.12 23.5 
 qGL5.3 2016 5 27836744 1.51×10-7 G/A 0.13 1.0 

 qGL6.1 2015 6 1103147 6.01×10-7 T/C 0.09 13.0 

 qGL6.2 2015 6 14837297 1.25×10-7 G/A 0.15 3.8 
  2016 6 14837319 4.62×10-7 T/C 0.17 4.7 

 qGL6.3 2015 6 21149455 4.81×10-10 G/A 0.15 4.3 

  2016 6 21149455 3.14×10-7 G/A 0.17 4.8 
 qGL6.4 2016 6 26822016 1.70×10-6 G/A 0.06 1.6 

 qGL7.1 2015 7 15943665 4.06×10-7 A/G 0.10 3.1 

  2016 7 15943665 9.63×10-7 A/G 0.11 4.7 
 qGL7.2 2016 7 24629753 8.82×10-7 T/C 0.07 10.7 

 qGL7.3 2015 7 28305040 8.42×10-9 G/A 0.06 1.4 

 qGL9.1 2015 9 7366713 1.11×10-9 G/A 0.13 30.1 
 qGL9.2 2016 9 13118071 1.02×10-6 G/A 0.08 3.1 

 qGL9.3 2015 9 14009731 9.70×10-7 A/C 0.08 1.2 

 qGL10 2016 10 6158569 7.02×10-7 C/T 0.06 3.0 
 qGL11.1 2016 11 2618388 1.19×10-6 C/T 0.20 13.1 

 qGL11.2 2015 11 26045504 3.21×10-7 C/T 0.14 3.2 

  2016 11 26045504 1.08×10-7 C/T 0.15 5.3 
GW qGW1.1 2015 1 6410156 7.35×10-8 G/A 0.06 2.1 

  2016 1 6366660 2.49×10-8 T/A 0.14 0.1 

 qGW1.2 2015 1 23616332 1.53×10-6 G/A 0.10 1.1 
 qGW1.3 2015 1 35531397 1.65×10-9 G/A 0.10 3.7 

  2016 1 35531397 1.61×10-6 G/A 0.10 1.8 

 qGW2 2016 2 23182516 4.45×10-7 A/G 0.05 0.6 
 qGW3.1 2016 3 13492943 5.20×10-7 C/T 0.12 37.3 

 qGW3.2 2015 3 15979561 1.30×10-6 T/C 0.49 17.1 

 qGW4 2015 4 27872617 3.83×10-7 A/T 0.07 1.1 
 qGW5.1 2015 5 5371716 3.70×10-26 G/A 0.49 42.2 

  2016 5 5371952 6.95×10-24 A/G 0.49 35.8 

 qGW5.2 2016 5 23699793 4.98×10-7 G/A 0.09 0.1 
 qGW5.3 2015 5 28016351 1.54×10-7 A/T 0.11 16.4 

 qGW6 2015 6 26455250 2.90×10-7 T/G 0.09 3.5 

 qGW7 2015 7 25037095 1.04×10-8 T/A 0.07 11.1 
  2016 7 25037095 4.22×10-9 T/A 0.07 9.6 

 qGW8.1 2015 8 1963860 1.46×10-7 C/T 0.07 2.4 

 qGW8.2 2016 8 21506944 1.53×10-6 T/A 0.06 0.9 
 qGW9.1 2016 9 10526914 7.59×10-7 G/A 0.06 2.7 

 qGW9.2 2016 9 13076645 1.61×10-6 A/G 0.08 3.1 

 qGW11.1 2016 11 3947107 1.80×10-6 C/T 0.37 36.5 
 qGW11.2 2015 11 4371420 8.80×10-8 G/A 0.09 12.0 

 qGW11.3 2016 11 6313711 9.62×10-7 G/A 0.06 8.0 

 qGW11.4 2015 11 9348182 6.65×10-7 C/T 0.06 1.2 

 qGW11.5 2015 11 15063878 2.29×10-10 C/T 0.06 2.4 

LWR qLWR1.1 2015 1 15292999 3.08×10-7 A/G 0.24 0.7 

 qLWR1.2 2016 1 27795538 1.62×10-6 C/T 0.36 17.3 
 qLWR1.3 2015 1 40079680 8.70×10-7 A/G 0.23 28.7 

 qLWR2 2016 2 7831173 1.74×10-6 C/T 0.26 17.8 

 qLWR3.1 2016 3 10757171 7.78×10-7 T/A 0.07 4.8 
 qLWR3.2 2016 3 14399796 2.78×10-7 C/A 0.08 3.3 

 qLWR3.3 2015 3 16733441 4.84×10-20 G/T 0.37 48.5 
  2016 3 16733441 4.98×10-18 G/T 0.36 45.4 

 qLWR3.4 2015 3 19643735 8.30×10-7 G/A 0.05 0.8 

 qLWR3.5 2015 3 29535523 7.76×10-7 C/T 0.07 0.8 

Table: 3 Continued 
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only in 2016, with average phenotypic variation rate of 

11.2%. Four QTL, qGW1.1, qGW1.3, qGW5.1 and qGW7 

were found in both years, accounting for 2.1–42.2% and 

0.1–35.8% of phenotypic variations in the two years 

respectively. Seven QTL including qGW3.1, qGW3.2, 

qGW5.1, qGW5.3, qGW7, qGW11.1 and qGW11.2 with 

phenotypic variations explained above 10% were the main 

QTL. For LWR, 25 QTL were detected on all chromosomes 

except chromosome 10. 9 QTL were found only in 2015, 

including qLWR1.1, qLWR1.3, qLWR3.4, qLWR3.5, 

qLWR5.2, qLWR8.1, qLWR9.2, qLWR11.2 and qLWR12. 

They explained 0.7–28.7% of phenotypic variations. 11 

QTL (qLWR1.2, qLWR2, qLWR3.1, qLWR3.2, qLWR4.1, 

qLWR4.2, qLWR8.2, qLWR9.1, qLWR11.1, qLWR11.3 and 

qLWR11.4) were identified only in 2016, with phenotypic 

variations rates varied from 0.1 to 17.8%. 5 QTL including 

qLWR3.3, qLWR5.1, qLWR6, qLWR7 and qLWR9.3 were 

found in both two years, with average phenotypic variations 

rate of 28.9 and 25.9% in 2015 and 2016 respectively. 

Among them, nine QTL with phenotypic variations above 

10% were main QTL, including qLWR1.2, qLWR1.3, 

qLWR2, qLWR3.3, qLWR5.1, qLWR5.2, qLWR7, qLWR9.2 

and qLWR9.3. 

 

Pleiotropic QTL for Three Grain Shape Traits 

 

In this study, a total of 70 QTL were identified for three 

grain shape traits (Table 3 and Fig. 1). Among them, eight 

genomic regions controlled more than two traits and defined 

as pleiotropic QTL. Two QTL (qGL1 and qLWR1.3) in the 

40.79 Mb on chromosome 1, two QTL (qGL3.1 and 

qLWR3.3) with the same peak SNP at 16.73 Mb on 

chromosome 3, two QTL (qGL4.2 and qLWR4.1) with the 

same peak SNP at 22.49 Mb and two QTL (qGL4.3 and 

qLWR4.2) in the 29.3 Mb on chromosome 4 and two QTL 

(qGL5.2 and qLWR5.2) with the same peak SNP at 24.53 

Mb on chromosome 5 controlled both GL and LWR. Two 

QTL (qGL9.2 and qGW9.2) in the 13.1 Mb on chromosome 

9 had pleiotropic effect on both GL and GW. Two QTL 

(qGW7 and qLWR7) in the 25.0 Mb on chromosome 7, two 

QTL (qGW11.5 and qLWR11.2) with the same peak SNP at 

15.06 Mb on chromosome 11 affected both GW and LWR. 

Three QTL (qGL5.1, qGW5.1 and qLWR5.1) with a mass of 

5.37 Mb on chromosome 5 had pleiotropic effect on all 

three traits. 
 

Discussion 
 

With the development of marker technology, a large number 

of QTL for grain shape have been mapped or even cloned 

(http://www.gramene.org/). However, most of them were 

identified by segregating populations derived from bi-

parents, such as F2, backcross population, recombinant 

inbred lines, chromosome segment substitution lines, 

introgression lines. They are very important populations for 

mining QTL/genes for all important traits, but there were 

still some notable limitations (Qiu et al. 2015). Firstly, 

selecting suitable parents was the key factor for research 

success. Besides, researchers had to develop segregating 

populations (Yang et al. 2007). All these processes would 

require a lot of time, labor and money. Moreover, because 

of limited sample number and meiosis, the mapping 

resolutions of segregating populations were low. Finally, as 

each parent carried only one allele, we could only detect no 

more than two alleles. Thus, we could not find the most 

favorable allele in the germplasms. 

In recent years, GWAS has been becoming a popular 

strategy for identifying QTL for complex traits, and the 

number of QTL detected by this method has been sharply 

increasing. The most important factors influencing effect on 

Table: 3 Continued 

 

 qLWR4.1 2016 4 22488406 8.58×10-8 G/A 0.05 5.8 

 qLWR4.2 2016 4 29343825 4.01×10-7 G/A 0.14 1.5 
 qLWR5.1 2016 5 5373491 2.15×10-22 A/G 0.49 41.0 

  2015 5 5373492 2.63×10-27 T/G 0.46 48.0 

 qLWR5.2 2015 5 24521950 6.01×10-7 C/T 0.12 21.1 
 qLWR6 2015 6 21149455 2.25×10-8 G/A 0.16 1.2 

  2016 6 21149455 1.69×10-6 G/A 0.18 1.6 

 qLWR7 2016 7 24943997 6.86×10-14 G/A 0.06 13.7 
  2015 7 25037095 3.42×10-15 T/A 0.07 15.4 

 qLWR8.1 2015 8 870364 5.26×10-7 G/T 0.09 1.6 

 qLWR8.2 2016 8 24258192 1.78×10-6 G/A 0.05 5.5 
 qLWR9.1 2016 9 1030669 8.35×10-7 A/G 0.05 5.0 

 qLWR9.2 2015 9 3539945 3.06×10-7 C/T 0.40 15.1 

 qLWR9.3 2015 9 7366713 4.10×10-9 G/A 0.13 31.2 
  2016 9 7366713 3.57×10-7 G/A 0.13 27.7 

 qLWR11.1 2016 11 5198328 8.70×10-7 G/A 0.09 0.1 

 qLWR11.2 2015 11 15063878 9.10×10-8 C/T 0.06 6.1 
 qLWR11.3 2016 11 18267418 5.70×10-7 C/T 0.12 5.9 

 qLWR11.4 2016 11 26045504 1.82×10-7 C/T 0.16 2.7 

 qLWR12 2015 12 15924561 1.18×10-6 T/C 0.06 1.0 
a Major/Minor allele 

b minor allele frequency 

c phenotypic variation explained 

http://www.gramene.org/
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QTL detection were sample number, marker resolution and 

genetic diversity (Yang et al. 2007). With the increase in 

sample number, maker resolution and diversity, the 

detection effect increased sharply. A total of 1016 rice 

accessions from 3K RGP were used in the present study. 

Compared with previous studies, the number was much 

more than most other studies. Besides, they came from 70 

countries and areas worldwide and had large genetic 

variation (Wang et al. 2018). They had high-throughput 

SNP genotyping with an average of 1.27 SNP markers per 1 

kb. Thus, the sample number, genetic diversity and marker 

resolution were all high, and a large number of QTL for rice 

grain shape were identified in a single study. Moreover, 

almost all grain shape genes with large effect were 

identified in this study, such as GS3, GL3.1, 

qSW5/GW5/GSE5 and GL7/GW7/SLG7. All above results 

indicated that our study was greatly pragmatic for detecting 

QTL for grain shape. 

However, there was another limitation in the present 

study. Before conducting GWAS, the SNP markers were 

screened and markers with rare alleles were removed to 

decrease false positive probability. For rice grain shape, rare 

alleles in some important genes were the responsible factors 

for phenotypic variations, such as GW2 (Song et al. 2007), 

GS2 (Che et al. 2015; Hu et al. 2015) and SGDP7 (Bai et al. 

2017). Because of removal of these SNPs, some QTL with 

rare alleles could not be identified. 

In the present study, a total of 70 QTL for three grain 

shape traits were identified on all chromosomes. Among 

them, 16 QTL stably expressed in both years, and eight 

genomic regions had pleiotropic effect on more than two 

traits. Besides, 25 QTL with phenotypic variation rates 

above 10% had large effects on grain shapes. They were 

important QTL regions for molecular breeding to improve 

grain shape. Among these QTL, four regions (16.73 Mb on 

chromosome 3, 5.37 Mb on chromosome 5, 21.49 Mb on 

chromosome 6 and 25.0 Mb on chromosome 7) controlling 

two or three traits and stably expressing in both years were 

the most important gene resources for improving grain 

shape. Among them, three regions (16.73 Mb on chromosome 

3, 5.37 Mb on chromosome 5 and 25.0 Mb on chromosome 

7) with large effects on grain shape were cloned as GS3 

(Mao et al. 2010), qSE5/GW5/GSE5 (Shomura et al. 2008; 

Weng et al. 2008; Liu et al. 2017) and 

GL7/GW7/SLG7(Wang et al. 2015; Zhou et al. 2015). We 

would further mine the most favorable alleles for molecular 

breeding. For the region of 21.49 Mb on chromosome 6, we 

should firstly clone the responsible gene and mine the 

favorable alleles, then use it in rice breeding program. 

 

Conclusion 

 

In the present study, 25 large effects QTL, 16 stably 

expressed QTL and 8 pleiotropic QTL were identified. They 

were all valuable gene resources in molecular breeding for 

improving rice grain for desired shape. 
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